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Abstract.,

3y use of the multinle-time-scale method, the low density expansion
is carried to the order of the trivle collision integral., The validity
of 3ogoliubov's assumption that the multiple distribution depends function-
ally on & single particle distribution is carefullv examined, It is found
that such an assumption is valid except locally for those particles
which have a large separation at a time t and which have their relative
velocity so oriented that they were in collision at t = 0, Since this
local breakdown is very selective, the trinle collision integral which
is found in the litersture is still correct, As a by-nroduct of the
multinle~time-scale methed, the rate at which a system approaches the
kinetic state is obtained; it is 8lso found that up to the order we have
considered the Maxwellian distribution is the only solution at thermal

equilibrium,



I. Introduction.

During the past decade, various methods have been developed for the
derivation of the Boltzmann collision integral from first principles of
mechanics (Bogoliubov.l Prigogine and his co-workers,2 Green,3 and
Kirkwood and his co-workersh). Recently the correction to the Boltzmann
(binary) collision integral has also been obtained by various investie
gators (Choh and Uhlenbeck,5 M. Green,6 Rice, Kirkwood and Harris,7
and Resiboisa). The relationship of various methods was first discussed

by Coheng'lo

who established within certain assumptions the equivalence
of the method of Bogoliubov and Green. More recently Sé.ndrill and
McCune, Sandri and Friemanl2 studied the problem of the low density ex-
pansion of the B=B-G~K~Y hierarchy by the method of multiple~time=scales.
They found that the triple collision integral obtained by the vprevious
investigators is divergent. The physical nature of this divergence was
not studied in any detail, On the other hand, the nature of the higher
order corrections to the Fokker~Planck collision integral was carried
out in great detail by Su.l3 The nature of local singularities in the
solution for correlation function was displaced there. Wellebehaved
correction terms to the Fokker-Planck collision integral were obtained,
In this paper, we shall use the method of nultiple«~time-scales to
investigate the nature of Boltzmann collision integral and its correction
terms under ghe assumption of spatial homogeneity., This syvstematic ex-
nansion procedure offers a simple way to demonstrate to what extent the
3ogoliubov essumption regarding the higher distribution functions as

functionals of the first distribution is valid. It is found, up to the

triple collision level, in contrast to the works in Refs, 11 and 12, that




Bogoliubov's assumption is valid except for a special local region in

two-narticle phase space, i,e., for two narticles having a large senaration
at time t and with their relative velocity oriented in such a way (say

in reference to their relative position vector) that they were in collision
at t = 0, This same local breakdown was first found in the investigation
of a weak coupling gasl3 which leads to Fokker-Planck equation in its
lowest order approximation,

Cohen,lh in his investigation of the triple collision, also found
it necessary to neglect the kind of singularity mentioned above in order
that the equation for the first order two-narticle function would admit
any solution at all, He remarked that, for the "large majority" of
cases, the equation for the two-particle function due to the triple
interaction was solvable and has a well-behaved solution. He seemed
also to encounter the same difficulty in Ref, 10 where he suggested a
coarse-graining procedure.

We shall indeed see that the secularity we have found can be elimi-
nated by an averaging process in the momentum space, provided we restrict
ourselves to the triple collision level, As one goes to higher orders
such an averaging is no longer sufficient to smooth out the local singu-
larity.

It is suggested by the nature of the singularity, that a new scaling
be applied to the hierarchy equation in this special region in phase
svace. The unit of time and length in this region is taken to be the
mean free time and mean free path respectively in contrast to the duration
of collision and range of interaction outside the special region, There

is no longer a separation of time scales in this region, The hierarchy
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equations have to be solved lointly on one time scale (kinetic time
scale). lowever, we note that the one-particle function is affected

by the two-particle function only "grossly,"” i.e., through the following

integral operator:

Here x is the relative position between particles 1 and 2, and ¢ is the
interpafticle potential. The subscript 1 (or 2) refers to the particle
1l or 2. The velocity integration abave oprovides the coarse-~graining
process which we mentioned earlier; this is, however, not sufficient at
higher orders because the singularity in the two-particle function then
becomes too strong. Since in the special region, the separation of the
two particles has to be large, if the range of the pair potential is very
limited, the contribution of any singularity at large.z'will be strongly
de-emphasized by the potential force d@/dﬁlunder the integral sign. We
therefore conclude that even though Bogoliubov's assumption becomes
locally invalid in a local region, the triple collision integral obtained
in the literature is correct. The procedure of solving the hierarchy
equations, such as that given by Choh and Uhlenbeck,5 can apparently be
pushed to higher order, provided the pair potential between the pafticles
is sufficiently short-ranged.

We shall formulate our problem as an initial value problem, Since
the relevent correlations between particles are those created through
the interaction of particles, the initial values for all correlation
functions will be taken to be zero., The effects of the initial values of

correlation functions on the one-particle kinetic equation were studied




in Ref, 13, +ithin the framework of the multinle-time-scale formulation,

all the rhysical chanres ir the problem annear in their own sroroonriate
time scales automatically: relaxation towards the kinetic stage on the
fast time scale (of the orcer of the collision time), kinetic evolution
on the slow time scale {cf the order of the mean free time). For the
snatially homcreneocus system which we shall analyze, the time scales
end automatically at the kinetic time scale, which, of course, is what

cne would exnect nhvsically,

IT. 3Binary Collisiocn Intepral,

The first three members of the B-Be(G=K-Y hierarchy for a spatially

homogeneous svstem under the low density anproximation are as follows:

f _ _n g | 3

R—Emjd_).(_dxzai 3&; R (1)

Loy, »B_28. (L2 (p(x) + (1)) (2)
= = -1 ‘=

=l l ag dv, % . (3?,_: [£(1)g(£-x,23) + h(x,§,123)]

- 'ai' [r(2)p(x-£,13) + h(x,x-£,123)]} R
¥,

3h o Adw L3 r-;-igi v (e o =) [her(1)e(23)+1(2)p(13)]

at ~ S12 T ax o A13 g x ey, T Ay,

(3)

Qo

13 3 * o/
-3 . (-5-}:— - -3-":) [hee{1l)r(23)+r(3)p(12)])

1 3
- . (E - 3'_5_';} [ner(2)p(13)+1(3)p(12)])

= integral terw with the leading term of oraer e.

i s AR R e PO SRS R A 4 S o Bt s 65 120 el

b s o b iR

Rt P defE o e e e

e v ity

Db L TR T

S

e



e

Here f is the one-particle distributien function; g and h are the twoe
and three-narticle correlation functians which are related to the two-

and three-narticle distribution functions as follows:
(1) = Fl(l)
r(12) = V2(2) -~ f(1)fr(2)

h(123) = F3(123) - f{1)g(12) = £(2)p(13) = £(3)e(12)

The time variable in the above functions is omitted for simplicity, The
numbers within each bracket indicate the smecific particles in which we
are interested,

X and § are the position vectors of vnarticle 1 relative to narticles
2 and 3 respectively, The small parameter ¢ eauals the average number of
particles within the range of the pair potential which is assumed to be
repulsive and finite in range.

The time and length in Eqs. (1) to (3) have been normalized by the
duration of a collision and the range of the pair potential respectively.
The mean free path of close collisions, in which we are interested, can

be given as follows:

vhere n i{s the average density and ro is the radius of the collision crosse
section, Identifving the latter as the range of the nair votential, we
see that the ratio of the range of potential to the mean free nath (or
the ratio of the collision time to the mean free time) is ¢. For verv

small ¢, we have therefore two distinct time scales in our problem: a




fast time which is of the order of the collision time and a slow time

which is of the order of the mean free time. In the method of multivole=-

time-scale, the slow time, es well as the fast time, is treated as in=-

bt ittt

*
dependent variables, i.e., we extend f(t) to f(t, et, e’t, ...). The

extra freedom introduced is used to demand that the solution for f be
wvell-behaved in the limit of t + =, i.e., no secular behavior for
g{t - «), Formally this extension in the time variable is equivalent to

the exvansion of the time derivative in the following way:

3 3 3 2.3
— et g =+ gle—, , (1)
ot ato atl 3t2
where
dto dat
el 1, Frai and so on,

We now expand f, g, and h in simple vower series in €, for examnle,

£ e glo) Ef(1) . c2f(2) ... (5)
From the zero order equations of f, it is seen that f(O) is to in=-
dependent. The equation for g(c)(i,lQ.to) is
g 3l 1ae a2 te) (138, (2 30(0);)0(0)
at L2x " ma v, - v f “md IV v :
o - - -1 - = -1 - 3
(6)
its solution is easilv found (since f(O) is to independent) as
A g0t ) = fs (12) - 1 CUTSTALIES (1)

o

»
The inclusien of ¢t and so forth is nurelv a mathematical rrocedure,

A discussion of the termination of tire scales is piven 2l the end of
tne next secticn,




vhere S_, (12) = exp [-to H(12)] is the two-particle streaming operator and
o

HI12) - L3, _ 13, 3 3
ﬂ(lr..) v a--m ( - )

-2 x . v, *
8_ a!i 8!2

The one particle function up to this order of approximation is

(o)
ar(l) . ar(°? n 4 e (i,l.?,to,tl)
ato Btl m = =2 dx 311

If we integrate this equation in to, the second term on the left side

of Eq., (8) will be proportional to t_. To avoid the secularity due to

yelo) (1)

/atl in the solution for f on the time scale to, ve require
arl®) 4 . (0) ;1 ,0(0)
o | wady, o 5o [5_(12) £ ()T (2)] (9)
1 - =1
and
-“—(l-)- =B axar. 8.2 (s 12) -s (22 (10)
it T m| = Rdx 3y ety T P

The integral term in (9) can be transformed into the usual Boltzmann
collision integral (binary). It is seen from Eq. (9) that the kinetic
evolution i{s in a time scale of order 1/e¢ compared with the duration of
a collision, It was shown that the former is Jjust the mean time between
collisions.,

Equation (10) gives the transient towards the kinetic stare governed
by En. {9). 7he (to) time behavior of the source function on the right
side of tq. (10) can be analyzed as follows. The pair potential has teen
assuzed to have a finite range., At time to‘ because of the factor

ds/dx in kq. (10), the particle ? must be within the ranpe of pnarticle




1 in order that the integral be different from zero. For sufficiently large

to' 5 N (1?) will definitelv bring particle 2 outside the range of narticle
o

#*
1. If the peir potential has an exnonential-like tail, the source
function of En. (10) will decay exnonentiallv in tc as to tends to in-
finitv, Therefore, in that case, the arnrnach to the kinetic stape is

exnonentially fast in the time scale of the collision time,

I1II. Trivnle Collision Intepral,.

The zero order three-narticle correlation function can be obtained

from (3) as

n(°)(£,£,123,t0) =([s_, (123) - 1]
(o}

- [s_t (12) - 1]
[o]
(11)
- (s, (23) -« 1]

-t
(o]

- [s_, (31) - 11} @) (1)el)(2)elo)(3)

(o]

where S_ (123) is the three-particle streaming onerator, exv [-t° H(123)],
o
and 1(123) is the three-particle lamilton overator:

i, Lildel (i3 1me. (2
H(123) = Yo " 3x T 43 T3 T max (av v, " m 3 (BV T v
X 2 = -1 2 = =1 -3
1 38(x=£) 5 3
mo3g Wp
-

The pair notential had teen assumed to be reoulsive,




The ;nteﬁraha,éf;gﬁjs{iﬁpeg;gl_ip»tbé'l;mit of’t° f,~];$'v1oxted
in Fig. 1. The-integfal on théAsegond line of (13) ié given by the
'shaded area in the ?favh.r‘ If,i‘is fjnite, the collision of particlés
1 and 2 (if thev hénnen to colliae)'will éccur at a finite 1 for ény

nonvanishing v The above menticned arer ic therefeore finite and

—-12?

hence is the integral, !cwever if we let

x= 13yt syl . (1k)

the intepral bncomesrs?nglv infinite!‘uhere 1, Y are censtants with

a > 1 and y related to the range of the pair ~otential. Ea. (1) in-
dicates a very careful selection of the noints in the phase snace of the
tvo interacting rarticles. Ue vant the narticles %o have a larse
separation at time to and to have their relative velocity oriented in

such a way {in reference to the direction of -their relative nosition
vector, sav)}, that thev were in collision at tn = 0, ©Such secularity was
also found in the weak courling exvansion.13 Mathematically it is

clear that the secularityr is due to the infin;te range of,p(O)(IE) in

the svecial‘ferioh,of nhase shace mentioned above. . We observe that the
solution for g(é)(IE,to) given by Ea. (7) cannot be valid in this snecial
region, since the assgmntibn of the independence of varticles 1 and 2

from the rest of ﬁﬁeVSystem in the lowest order apnrdximation becomes- in-
valid if the yarticles have an infinite range of correlation, The nresence

of a third narticle cannot be ignored.

If there is no. collision betveen the time 0 and t_, 5_ glod (o)

and §_ f(°) (o) coincide from 1 = 0 and on to infinite, the integral

is zeto identically.

b




Next we con51der the contrlbution of the 1ntegral terms to the

solution for g( )(x 12, t, ). ance the structure of the secona snuare

bracket of the xntegral term 1n Eq. (12) is very much the same - as the
fxrst one, we shall,analvze the first one onIV. 1.e.,

(o) 1yplodnyplo) 3y (15)

S_, (%.6,123,t) - 5__(£,13)]f

o :

It is seen that because of its beihg X and,t independent, the

second term in the above expresslon w1ll cause a secularlty 1n the soluticn
for g(l). To be free of secularity one usually, thqugh not alwavs cor-
rectly, seeks a:cancellationfbetﬁeeq therfirst and second terms for all
x and &. This led Sandrill to coAclude that the cancgllationris not
exgct for some kinds of interaction between the three particles and thus
he was faced with a general secularity (non-local) in the exnansion.*
However, considering the expression in Eq. (15) ns a source function of
the differentinl equation for g(l)(5,12,£;). wé see that the solution
for g(l)(i‘l?’to + ) dépends vefy much on the behavior of this source
function in terms of x. It is evident that if this source function has
a finite range in‘x; and goes to zerorsuffiéiently fast as |x| » =, the

(1)(x 12,t ) will “be vell-behaved in the limit of t + o,

'solution for g
To 1nvestigate the var1ation of the source function in terms of
X, we consider that at time to therconfigurationjaf'ngrticles 1, 2,

and 3 is as shown in Fig. 2. We;assﬁme'that the three particles inter-

gct gimni;pn§g§31y gt'the tihg}tb; Apgrt from~the'integral'opgrator*'

Sundri used the hierarchy equations for S-particle functions- the

corresponding quantity vhich cansed the secularity is then af (°)/at




the first term of the source function in (15) is

5_, (_:5.5,123“‘(0)(l)f(O)(2)f(°)(3) = rlo)anyeledaneledzy  (16)
o |
where L', ¢', and 3' are the velocities of the three particles ot the
noints -to backwards along the particle trajectories from the initial
configuration 123. For the second term in the source function thé narticle
2 does not interact with either 1 or 3. The tralectories of 1 and 3 are’
then given bv the dashed lines in Fip. 2 becausc of the absence of 2.

Thus
elo)z) S_(£,13) = £00)(2) £le)(amy lo)(ym) (T

‘The points 1" and 3" should be projected infinitely far back from 1 and 3.
After particles 1 and 3 leave the interaction zone, there is no change in
their velocity; it is immaterial exactly where 1" and 3" are, provided

_ thev are out of the interaction zome. For such an event, (16) and (17)
are not the same in the limit of to -+ o, however their differghce isi
finite. As lgl increases, the effect of the phrticleVQ on the motionr

of particles 1 and 3 becomes less. For a sufficiently large |x| we see

that
l' - l"
2' - 2"

73' - 3"

“and4the,expte§sions in (16) and (17) exactly cancel each éthgrvexcgp; '

'inrthe folloﬁing.gvc»ins;én:és:. >, 




1) Two- successive binary collisions i * 3 and 3 * 2., fof ‘any
finite lxl there is no difference from the previous sxmultaneous inter-
actionrl * 2 *:3. Tne source fnnctlon does not van;sh. ItAcen,be.seen
that the expressions (16) and (17) do notrcancel each other even in the-
limit of Iil + ® (see Fiz-r3). However in'such a limit we see that
| -~ x| also tends to be very large. This follows oecnuse |g] nas to
be finite because of the factor d¢/dg in the source function. It can be
seen thet in the limit of ]& o~x] + ® in order that the second binary
colllslon 3%2 occur at all, the reletlve velocity between 2 and 3 must be
selected veryv carefullv. 'lhe relative veloc1ty between 3 and 2 after
1#3 (part;cles—B‘at 3$) must be oriented almost in the direction of
£ =~ x. In other wvords, particleVB et 3é mustrain at particle 2 which
is at a large distance away, The solid angle in the relative velocity
space v _235, within which the second binary collision is possible, goes
as 1/]¢ - x|? as | -~ x| * . We thus conclude that although tne ex-
pressions in (16) and (17) do not cancel in the limit as ‘xl + = the

goes

1-
source functlon 1tself which contains a velocity integration dv3 ’

to zero in the limit as |x| » =.

2) Two successive binary collisions 1 * 3 and 1 * 2, The situation
is much the same as before. In order to have such successive binary
¢01L1519n§ in the limit as lxl > =, vwe reqnire,eﬂspecia; orientation4

of the rclative velocity v Since now there is ‘no integration ‘over

12
' .2 or _Q. t;he source function for this special arrangement (or ’

eqniﬁalently the special local region in ‘the phase space) becomes in-

The syubol & between ‘two numbers 1ndicates ‘the interaction between
the tvo perticles designated by the con‘esnonding number.

t

“An va anonnts to an integration in v3

o Aol b 6L

Rote velocitv v3, and ¥ are: related in a deﬁnite way. The integration

A B bz 5183 s - e 24




finite in range. "The cgntriﬁgtiopito}theesciufieneforAé?llfiglé,to‘flu)
becomes secular. _This‘loéei seculafity'isrvery similar,to that caused

by the term ag(°)/aet. However these two,éiﬁgnler>tefms dqxnbt in

general cancel each other exactly. In order to ensure the'secﬁlarity,
of Eq. (13), the orientation of i is determined indenendently of the
presence of narticle 3, while in Eq. (15) there is a strong denendence

on particle 3 (comnare Fig. 1lb ancd Fig. 3). We therefore conclude that

the solution for é(l)(i,l?,t) is locally secular at .

L+ Bty (18)

This exoression includes kq, (1b4) as a sneciai'case.

We have indicated earlier that in this snecial local region,
g(o)(§312) is non-secular but has an infinite range in x. Now
p(l)(§,12) becomes—proboitional to to as to becomes iarge. In order
to preserve the asvmptotic charecter of our series representation of

g in the limit as to - @, we must reguire

tec % A (19)

and consequently from Eo. (18) and (219) 7 ,:é

[_;‘(_l << -t- V (20)

Since our time and 1ength are normalized bv the collision time and

- renge of the pair potential respectively, ‘the inequalities (19) and (20)
rindicate thut the rormal expansion so. far cartied out is at most valid N
only for a time duration of the order of the mean free time and ‘a length

(o)

scale of ‘the order of the mean free path. ”he solution fcr g cannot

be valid in tbia srecial repioa, since the binary interaction alone i,'
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cannot be the- leading approximation, In other words, when we solve for

g(x,12) (the correlation function of 1 and 2), the presence of a third

particle can no longer be ignored,

We now introduce the following scaling for the twowparticle core

relation function equation:

l 1
X = =X
€

(21)

qhere t! and x' will be .of order unity-for a time of the order of the

. mean free time and a particle separation of the order of the mean

path. Using Eq. (21) in Eq. (2), we obtain

2% N S A
% vy, 3§- - ','*31%' T 31’.2) [e(12) + £(1)£(2)]

=2 agay 2. (ril- [F(1)g(E=x323) + h(x',£,123)]

- 5= [£(2) glx'=£,13) + n(x',x'-£,123) ]}
A |

free

(22)

This equation cannot be sdlved independentlv of f as before, since both

f and g are now t@ dependent. We see that the governing svstem in this

local region is non-Markoffian and Bogoliubov s functional assumption

is not valid. ,In other.words, the evolution of the system 1n this.local

regicn cannot be deseribed by a self-cantained one-parttcle equation'

the correlation functions vary in the slow time scale on their own right

{not as: funetional ‘of the one-particle function).

Kov&var, the centribntian of such a local nonnarkoffian solution

'fjto tﬂé one-particla funetioa is only a. hipher order etrect because of ff'

RS T

indi

st b S s b




-i»'{-’

=2

and the~theﬁtial'factor'd¢/d§‘in the
one-particle equation, i.e., .

the velocity integration dv

 _n d¢ , &
5 - om | &9 dx v : (23)

=1

For a pair potential having a range much smalle% than the mean free

path, the contriﬁution of g to f from the above mentioned local region

is negligibly small, We therefore conclude that as far as the one=-

particle functioh is concefned, one can ignore completely the local

non=-Harkoffian reéion indicated earlier. In other words; for the

correction term of the Boltzmann collision integral, one’simple,soives
(12) for g(l)(t + =) and substitutes it into En, (23).

The solution for g(l)(i,le,to) is obtained from Eq. (12) as follows:

e Vix 2,0 )+ e ) 2@y 4 rWizpe ) el (2k)

n

. n (1) - (o)
to(l“) (77 (1,t =0,t)) (2,¢))

+ f(l)(Q,to=0,tl) f'(O)(l,tl)]

t
n (°© d 3
* ; { dz 8’1(12) ! d& de a—é . {'s'zl- S-to+1(£.5,123)
) )
-5 .., (12)'.,-53— S_(£,13) - 33- S_y 4o(Xex-£,123)
“to*? L T oy T T
. (12) g s__(-5,23)) r el (2)elo)(3)
W, . : , ,

o
Yot et
B

uhere ( }(t =9) is the znitial value of f(l)(t )

For the investigation nr the one-nart;cle equaticn, thc @eccndﬂnﬁd«iif'?[;j




third terms on the left side of Ec. (2&) ‘can be 1gnored because of the
x 1ntegrat1on in Eq. (23) leen,arflnlte x, for sufflclently 1ar¢e t;*
the variation in Tt of the first two terms 1nszae the curly brackets of
Eq. (2U) is as shovn in Flg. L, The llttle bump,qear't ; té reoresents
the interaction of the pnrticles'at the iime to’ ‘Noterthat the successive
binary collisions discussed eaflier have been neglected. In 6ther wdrds,
the local region as indicated in Eq, (18) is'excluded in the present
discussion,

The operator S_ (12) makes the contribution of a function which
has a finite range in |x|, completely negl1g1ble in the 11m1t of larpe' .
Therefore as far as the integral over t in Eq. (2&) is concerned we can

neglect the bump in Fig. 4 and the corresponding expression for hq. (2h) 1is

Fél) (£.12.t°_’ Doto) = g(l)(lZ)Qf(l)(l)f(0)(2)+f(l)(2)f(°)(l)

=s_(12) [r(l)(l,to)f(O)(Q,tl) + r(l)(?.tl)f“)(l.tl)l

: o d ,
+2 ) ars_(12) | ag av, a—% . {—l_s (x.l: 123) (25)

[o]

3. N o
-s_(12) E s__(§,13) = E o__(g,;fs_,lg;,)

-s_(12) -5%-_5_,(5_,‘23),} r‘?)(.l)r(°) (2):({"})5(3)_

(1)

This expression for F,'' is equivalent to the ong,op§g;ned.bnyhph

and Uhlenbeck except for the first term on the right side, yh;gh vanishes -




- for f(l)(to=o) = 0. It was first pointed out by Sandri'l that the role

of the functional dependence in the Bcgéliubov méthod was played by

{o)

the term ag /atl in. the multiple~time-scale formulation, Still ignoring

the successive binary collisions discussed earlier, the solution of Eq.

(25) can be written in the following more familiar form:lh

Fy(xi2,t + =) = 5_(12) [P 1)eld(2) + ¢ 2)e() 1))
+ | dg avy [S_(x,£,123) - 5_ (x,12) §__(£,13) (26)

- s__(x,12) s_w(f,_.i,vz3)' +s__(x;12)] f(°)(1)f(°)(2)f(‘°)(3)

The corresponding one-particle equation, ignoring the transient

of order of the collision time, is as follows:

(1) (o)
af a0 o &, 2 (1) (o), (1) (o)
Eouhie ekl dxdy,, Exf N d£d13vsr_m(§,12)[ et Oyt Hplo))
=2 axav, 2. % dg avy [s_(x,,123) (27)
- 5_[(x,12) s__(§,13) - s__(x,12) S__(£-x,23) L §
+s_(x12)] £ 02 (2)el0)(3) "

The variation of'f(°) on the t,

by the condition of non-secularity of f

time scale can qgiy“berdgtérhinéd

(1) in the long time limit of t.
In the limit of t, <+ =, by the vell known Hetheorm of the Boltzmenn i
Ail(hina:yi collision integral, fcolrgges tgfthg,Hﬂxvé;lian;Q18§:i5§t109§~lL




It is not difficult to show that the right hand side of Eq. (27) vanishes -
(o )

for f equal to the Maxvellian d1str1butlon. Therefore ve: have, by

- the condition of non-secularity. that

(o) o o i
af " —* 3
31,2 =9 , (28)
and
(1) f : ' -
agti -3 J'di ay, %xf : -3,3,: s_12) [ el 2y M 2)elo) )

'ts';,(»_:g;_g ,123) - 5_ w(la)s_‘,,(;.l,j)

-5_.(12) s__(g-x,23) + 3__(x,12)]r""
The second term on therright side of Eq. (29) is the triple collision
integfal which has been obtaineo by Choh and Uh'lerﬂ:ecl'cl5 (‘reen,6 Rice,
- Kirkwood, and He;ris47 end éesioois.8 Equation (28) indicates a self~.
termidefion»of the nuitioleetimeAscale‘fo;mulatioh, i.e,.ithere'is no
variation'aiter thertioe scaie of'kinetio evolutioh, yhioh is,whatrone
vould expect ohysically for 8 homogeneous‘system..‘; '

It is well known that on the binary collision 1evel a system with anv

disturbance vill 8o to the thermel equilibrium as: indicated by the H- '




. above auestion order by order. Vqut becnus e af txa di=theorem of the

(o) .

btinarr collision integral we know ¥ bezomes Yaxwellian in thermal

(o)

a enuilibrium. ¥ith £ 7° = fmax’ ‘the tr'n1P collision integral vanishes

and we are left with ’ ’

(1) f :
£ (')(, (W) oyelediny (30)

n d . (1) <
ot h dxdy,, -d-% e 5_o(12) e (e 2)er

Combining this with the lowest order anvnroximation (Boltzmann's equation);

ve obtain

] {o) (1), _n d¢ (o) {1 (o) (1) 2
TN (20 v er )= = dxdv,, ax 311[ (1)+er (1)][r 2)eer 7 (2) ]40(e?)
. . cos . (o) (1)

Hy the H-theorem for this collisicn intepral, we know that f + €f

goes to the Maxwellian distribution in thermal equilibrium. If we choose

(l)(t =0} = 0 initially, f(l) poes to zero in thermal equilibrium because

Ens, (“9) and (30) nreserve the normalization of f‘l) Such = statement

apparently holds also for the higher crder approximations




"IV. Discussion,

Usigg,the multipleotime-scale hethod,,it is foudd that the tripleu'>
collision integral-for a classical Boltzmann pas is identical to that
obtained by Choh and Uhlenbegk. The functional devnendence of ihe
multiple rarticle functions on the one narticle function is nevertheless

lfound to be locally invalid for particles having large separations at
timg to‘and with their'relative velocity oriented in such a way that they
wergrin coLlision ét‘té = 0. Such locally non-functional behavior of
the multiplelpgrticle functiéns is related to the inseparability of the’
tihe,and length scales caused by the two successive binary collisions
which pgﬁpen at a timg,inferval of the oraer of the mean free time. A new
scalihg for such a local region is,given; The self-contaiﬁed (or Markoffian)
one-particle description of the system which is true outside such a region
is found to be 1mpqs§ible. The hierarchy equations have to be solved
simultaneously on the kinetic time scale (6f,the order of the mean free
time), Hﬁwever, due to theryéry special natufe of the relative velocity
in this lpca; breakdoﬁn, the contribution of this local region to the
one-particie functionrcomgs into play only at orders highér than the
f?iplevcﬁllisipn level, ;Furthe;mqre, if the,pair‘ﬁpieﬁtiél is liqited
in 1ts.¥ﬁnge. Sﬁch a local contribution can be neglected even in highgi

orders,
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